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f A =JLIVARIATE SOLUTION Of THIE
I ,,TJMULTIVARIATE RANKING AND SELECTION PROBMZ,

• !Edward J. Dudewicz and Vidya S. Taneja /
Department cf Statistics Departnnt of Mathematics
The Ohio State University Western Illinois University

Columbus, Ohio 43210 Macomb, Illinois 61455

I

ABSTRACT

I The problem of selection of the b, st multivariate population

is given a new formulation which does not involve reducing theI ipopulations to univariate quantities. This forulation's

solution is developed for known, and (using the Hetercscedastic

Method) also for unknown, variance-covariance matrices. Prefer-

- ence reversals and arbitrary nonlinear preference functions are

explicitly allowed in this new theory.4now

1' 1. INTRODUCTION

Let Tri be a multivariate normal population with p (> 1)

Ivariates, Tean vector i and positive definite variance-

covariance matrix i (I i,...,k); i.e., let ri be N (i, i)
1(i : ,... ,k). The problem of selecting that one of Ti"" Tr,

which is "best" in some precise sense is an important one which

arises frequently in practice (e.g. see Chapter 15, pp. 341-394,

.1T
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of Gibbons, Olkin, and Sobel (977)). However, "The whole field

is as yet undevelced and the reader [of Gibbons, O1kin, and

Sobel (1977), p. 390] is encouraged to regard this chapter

i [[their Chapter 15] as an introduction to a wide area that will

see considerable development in the future as more meaningful

models are formulated." This current paper deals with the devel-

opment of such a model.

Most often, studies in this area have started by assuming

I given a known function p <Ku, 1) which is real-valued. One
then defines p. -- .. - ') defines the

xopulation associated with the largest [sometimes, the smallest]

I of 1 .. 'k as "best", and then proceeds to develop ranking and

selection procedures for the resulting univariate problem. For

example, one often then seeks to develop a procedure & such that,

for a fixed P* (1/k < P* < 1) the probability of a correct
a selection satisfies

inf P(CsI) =

where QP is some subset of the parameter space Q of ul,... ' kl

:l"'" (Let [i] <-" [ denote kl,...,k in numerical
order. Then if "CS" means selection of the population with [k]

and OF i s a proper subset of Q, we call Qp the preference ZO7ce

and say we are dealing with the Lndifference-zone setting

pioneered by Bechhofer (194). hile if "CS" means selection of

a subset S of .r1 "'" '7k } such tra-t S contains the population

with t[k] and Pp Q, we say we are dealing with the subset-

selection setting pioneered by Gupta (1956).) Various authors

have made various choices of the real-valued function (i, 1).

For example, t z i' t-_1 (A.lam and Rizvi (1965), Gupta (1966).

Srivastava and Taneja (1972)), i' u (Srivastava and Taneja
(1972)), a 'a for a vector of constants c (Krishnaiah and

Rizvi (1966)), the generalized variance (Gnanadesikan and Gupta

(1970)), iegier (1976)), the multiple

2
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correlation coefficient (Gupta and Panchapakesan (1969), Rizvi

and Solomon (1 73), A-amn, Rizvi and Solomon (1976)), the product

nKxrent ccrrelation for the bivariate (p 2) case (Govindarajulu

.nd Gore (1971)), and correlated variances (Arvesen and McCai-e

(1973)).

, hile in studies to date, as detailed above, the -rulti-

varia-te rankinig and selection problem has been univariatized
(often for mathematical convenience rather than for compelln: g 6

reasons why one should regard the ( , ) used as a narutaal

measure of population goodness; while w' do not mean to say or

i1 imply that the considered in the literatare are always un- P

reasonable in practice, we do believe there has been somawhat

j mre eimphasis on them than thei- applicability warrants, due

largely to their mathematical tractability; for example, we

are not aware of a development of Mahalanobis distance showing

it to be a n.tural measure of distance), in th present paper we

attempt to give a first multivariate solution of the multi-

variate rarking and selection problem. In particular, our

treatment allows for such occuren.es as (letting >P denote "is

better than" or "is preferreQ to")

whih ae wll-c~on1 2 3 11

which are well-known in (e.g.) sports (tennis, golf, etc.).

While (1.1) is a, anomaly in previous treatments of multivariate

ranking and selection, it is to be expected in truly multi-

variate problems (i.e., problems in which one cannot associate a

univariate measure of goodness, or nuner, (i, ), with a given

population, but must rather compare different (w, ) pairs them-

j selves in order to determine which is preferred), and it iE not

anomalous in our treatment of multivariate ranking and selection.

For other approaches to "anomalies" such as (1.1) (besides the

most common one, of denying its existence and blaming it on

"random variability") see Good and Tideman (1976), Fishburn

(1977b), Young and Levenglick (1978), and Lee and Dudewicz U1980).

3
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Note, however, that the approach presented below is also

applicable to the situations (perhaps mare common than those

described in the above paragraph) where there is associated with

each population ri a numerical "goodness" u i = u(pi), 1 < i < k,

such that T is preferred tonT.iff u > uZ (1 < j, R < k). In

that situation, we are able to allow not simply linear functions
u(i), but arbitrarily complex reality, including e.g. quadratic,

polynomial, exponential, and power series or even Fourier series

functions.

Due to repeated skepticism of the true existence of

situations like (1.1), and as a contrast with the situation in

the above paragraph, an example of (1.1) nmay be useful at this

3 point. Namely, in the Open Tennis Career Records as of 11/14/78

(compiled by Mr. Steve Flink of World Tennis, and graciously

provided by Mr. Ron Bookman) one can let Ti = Mar t i na

Navratilova, 2  Virginia Ruzici, and 3 Regina Marsikova.

Then T 1 
u r 2 (by 3-0), 7t2 A T3 (by 4-1), but 7T3  iT (by 2-1).

Any reasonable approach assi-ntng u(Li) independent of examina-

tion of u's would, in this setting, come to erroneous coiclu- a
sions as to the relative merits of 7i and "r3 .

Briefly, in our new theory we let g(jl," ' be an

Sexperimenter-specified function with range space {1, 2,... ,k}

and surh that

g(p1,..""'-k) = j (1.2)

iff, given a choice among Pi"'" ' 4k' the experimenter would pre-

fer ij. Below we give nitivariate preference selection proce-

ures VMP which sample from each of l,"... ' T k' estimate pi by

Pi U 1,...,k), and select

T. )  (1.3)

This is done first for the problem of selecting 7 b where

b = g(p1 "A'Hi) when .j = k = c2 1 with u2 knoln (Section

2), then when I =" = k with T known (Section 3), next for

L4
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the case of known but unequal (Section 4), and finally

(using the previous results as a base for The Heteroscedastic

Method) in the general case when 1 * 4 k are unknown and not
necessarily equal (Section 5). (While sections 2, 3, and 4

could be combined, we have kept their results separated for

several reasons. First, our new approach to multivariate selec-

tion is most easily understood in the context of Section 2,

where the fewest multivariate complexities are present. Second,

the setting of Section 3 uith $ =... 4 is that which The Hetero-

scedastic Method builds its solution on. The probability

expressions developed in Section 4 are useful in Section 5.)

Extensions are then noted (Section 6).

We wish to emaphasize that the nature of the preference

function g is not a chief point of interest in this paper;

however, our work holds for any and e- - r- such function. The

specification and/or elicitation of s .-h functions is part of

the field of decision theory. Up to now it has dealt with only

relatively "simple" types of functions. (For some illustrative
papers developing nonadditive (but still relatively simple)

utility theory, see Farquhar (1976) and Fishburn (1977a). For

some typical applications of this utility theory in practical

situations, see Giauqie and Peebles (1976) and Krischier (1976).

For som consideration of assessment of multiat-tribute cardinal

utility functions see Kirkwood (1976). For research papers and
a survey of the field of multiple criteria/objective decision
making, see respectively Starr and Zeleny (1977) and Hwang and

Masud (1979).) We plan to investigate such specifications as

(e.g.) polynomial functions g. The present paper investigates

how one can do statistical inference with any such function

(even if not completely elicited or known), and this has been

hitherto unavailable.

-wI
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2. SELECTION OF niE BEST WE I k I , a

A Let ri be Np (-i' ti) for i 1,...,k, and assume p > 1

and i = 2I. Here I is the pxp identity matrix and

and G2 is assumed known. Let g( ,, ... ) be an experimenter-

&specified function with range space {l, 2,...,k}, where (1.2)

denotes the fact that wncng 1"'-"-k the experimenter prefers

I.. The natural selection procedure in this setting is to

observe n independent observations from each of i'"... ,rk
estimate vi by the usual sample mean vector wi (1 < i < k), and

select

7gT ' "'' k (2.1)

Call this selection procedureftMvP ( 21).

Of course if the true means

= ( l"'' k)(2.2)

are such that g(p) j 5 while g(p + E) = 2 (Z 4 j) for a matrix c

of srvrl1 numbers, then the probability of correct selection of
V (o2i),

,, J 
P(CSIeV P (021)) , (2.3)

MVP
will not be much larger than i/k. We will therefore show next

how to specify the sample size n per population so that, for a

reasonable preference zone Qp(d*) (d* > 0) and a fixed PC-

(1/k < P", < 1) procedure MVP(o 2 I) satisfies

inf P(CS[ V (Cr2I)) > P* (2.4)
Z ( d * ) --V "

Let

P- {1: g(p) = j} j 1,...,k, (2.5)

and note that P,... 'Pk are disjoint preference sets whose union

is J<P. Define the distance between any two points a and b of

kp as the usual Euclidean distance

6



kp 112
d(a, b) ( (ai  bi) 112  (2.6)

and denote the distance from P to the boundary of Pg(p) by

dB (P) inf{d(p, b): b { Pg(j)} (2.8)

We now set our probability recuirement for any procedure V as

P(CSIj) > P* whenever dB() > d*

j (That is, we desire a selection procedure G which has probability

at least P-" of choosing the true best population (event "CS")j whenever the mean vector P is at least distance d" from mean

vectors where other populations are best. This same require--

ment is used in Sections 3 and 4 below also.) WheneverSdB (P) > d* we have
P(CS I0MVP(o 2 I))- P6  C Pg(P))

3 A

> PEd(w, P) <dB()]

S > P[d(w, p) < d*] (2.9)

k p P̂A2 2

P ((ji < n(dZ<2/o2]

iP Z=l Pi - P

P[Y < n(d*)2/o21 (2.9a)

where Y has a (central) chi-square distribution with kp degrees

of freedom. Hence we obtain

THEOREM l. Selection procedure 5MVP( 2I) satisfies probability

requirement (2.8) if the sample size n per population satisfies

7. - . , - -- 7i - -
-
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Sn >2 (p;,I) o2/(d,)2 (.0

I _~~ Xkp (.0

where X2 (11*) is the value a central chi-square random variable

with kp degrees of freedom fails to exceed with probability P*.
The problem of how a practitioner will in practice choose

P*' and 6*" deserves some comment. First, choice of P* is

similar to choice of power in tests of hypotheses, and a

common desire is for P' = 0.95 or some similarly high value.

The choice of P* is similar to the specification in ANOVA of the

alternative (noncentrality parameter) at which one wishes the

power guarantee. If the experimenter specifies the minimum i-
range between the largest of pl'i' 12,i'" " pk,4 and the

smallest of -!, 2,i';, u-ki which he wishes to detect as

6- > 0 units, then whenever

max(l,i) P2,i " k, i min(pl, p2,...'pi) >"i (2.11)

we have (for any two possible w's, say a and b, which satisfy

(2.11)) d(a, b) > Ai/2. Hence (since the Ai of interest may

vary from component to component), one may choose 6*

min(Al,..., ,)/2. This is similar to the ANOVA situation

as considered by, e.g., Scheff4 (1959), pp. 63-64.

Regarding use of the usual sample mean vector P. to

estimate i U < i < k), it should be noted that this is perhaps

not optimal. However, recent results of Draper and Van

Nostrand (1977) suggest an optimal estimator will not be far

away from this estimator.

Note that use of d(u, b) specifies the part of PkP where

we control the P(CS); it does not univariatize our preferences.

Also, g as a function of the pi's alone is most usual when the bi's

relate to long-term yield (in decision theory); extension to

8I



functions of pi's and i's (when 4ijs are unknown; when they

I are known, the present results suffice) is a desirable area for,

further study.

j 3. SLCTION OF THE BEST WMq t " t : KNOWN

Let 7i by Np ( i i) for i i... ,k, and assume p > 1

and k:. " Here 4 is the common pxp variance-
covariance matrix and is assumed positive-definite and known.

Let A1 < A2 < ... < Xp denote the characteristic roots of 4.
Let g(l'... Ilk) be an experimenter-specified function with

' I range space {i,... ,k} as in Section 2, and consider using the

same selection procedure as in Section 2 (but now denote it by

MP(t) to explicitly take notice of the different variance-

covariance structure being assumed). Still taking our

probability requirement as (2.8), we wish to determine the

comnmn sample size n per population in such a way that (2.8) is

guaranteed. We will find the following result (Rao (1965),!
I p. 50) useful.

1LEIA 1. Let A be any symetric pxp matrix, let

I < 02 <... < ep denote the characteristic roots of A, and let

x be any pxl vector. Then
elx'x < x' A x < Op'X . (3.1)

Now, choosing A = 4-i in LenTa 1 (so 01 is the smallest

I characteristic root of 4-l, i.e. 1/X ) we are in a position to
p

show that whenever %(P) > d* we have

I9!
I
I



F(CSj&1'k 4D P(p cPg )

k p A 2
> PC E 1 (Wit Pit) 2 (d)2 J

k A2

PC Z -i ( i) < (d*)

k A

p p

k 2 n(d,)2/X ]
> P Z n(pi - 2i) , $-i 1 _

-PY < n(dP)2/p ]

where Y has a (central) chi-square distribution with kp degrees of

freedom. Hence we obtain

EOREM 2. Selection procedure -P (t) satisfies probabilityU
* requirement (2.8) if the sample size n per population is such

that

'n > x /(d*) 2  (3.2)
, -- p

whe:'e X2(k*) is the val.ue a central chi-square random variable

with kj degrees of freedom fails to exceed with probability P*
and Ap is the largest chac:acteristic root of Io

4. SELECTION OF T&E BEST WI-EN I ... 'k KNOWN

Let ni be Np (i, $i) for i = 1,... ,k, and assZne p > 1.

Here the k positive-definite pxp variance-covariance matrices

Y" 'k are asstumed known, but need not he equal. Let

g(p1 ,... ,p ) be an experimenter-specified function with range

space {l,... ,k) as in Section 2, and consider using the sane

selection procedure as in Section 2 (but now denote it by

,A;P4 1'" 4 k) to explicitly take notice of the different

variance-covariance sturctures being assumed), with the

10



modification that now n. observations are taken from

t.J" (1 < i < k). Still taking our probability requirement as

(2.8), we wish to determine the sample sizes n1 ,... ,nk in such a

way that (2.8) is guaranteed.

Let Xip denote the maximum characteristic root of ti (i.e.,

i ,the smallest characteristic root of tI), i = 1,...,k. Using

results developed previously, it then follows that whenever

*j dB M ) > d* we have (letting n[l] min(nl,...,nk) and ;Lk]p =

max(p,.. kp

£P(CSfQ 1 iP41,... -t~

k A2> P[ E CIji - i)'(Wi  - i) <  (::2

k- (4.1)

I :>P[ : n. r (. -E.2 (n Pi) < 1 (d*w)2]

±l1 -1 Pi -i 1 km

1k 1
EL Z - i( - w) < n[l (d*) /X I

P[ Z Y. < n~l(d*)2/Xk]p]

where Yl"' ,Yk are independent (cent-al) chi-square random

variables with p degrees of freedom. Hence we obtain

THEORDM 3. Selection procedure 1 ,k ) satisfies

probability requirenent (2.8) if the sample sizes nl,... 'nk are

such that

> XkP (V Lk]p/(d*)?Ek~p (4.2)

where Xp(Pl) is the value a central chi-square random variable

with kp degrees of freedom fails to exceed with probability P*,

nCl] is the smallest of nl, ... ,nk, and ALkip is the largest of

the characteristic roots of $i'" "

111'"



Using Theorem 3, in the design problem one -xuld of

course choose equal sample sizes n. n2  ... = n k equal to the

smallest integer > the right-hand side of (4.2). However, if

unequal sample sizes nl,... ,nk have already been taken, one can

nevertheless easily assess the smallest d* for which (2.8) is

satisfied by solving (4.2), as an equality, for d?-.

As an exact expression for the first bounding expression

f. in (4.1), we have

k
P(CS -PC E.' (Ii - ji) < (d')2]'M -ltl i--i

(4.3)
P[s 1 +...+ < (d*)

where Sl ... ,Sk are independent random variables. This can be

used to achieve (2.8) with a smaller total sample size

+ 2 +...+ n k in the design problem, via choosing n, .. . ,n k

so that (4.3)'s right-hand side equals P-* and n I + n 2 +...+n

is minimized. Similarly, in the situation where nl.... nk have

already been taken, the smallest d* for which (4.3) equals P*

(hence (2.8) is satisfied) will be smaller than that provided

by Theorem 3, hence yielding an improved (strengthened) proba-

bility requirement. However, since it is computationally dif-

ficult (i.e., expensive arid time consuming) to evaluate (4.3),

we have emphasized a simpler result (albeit it requires a

larger sample size (in the design setting) and yields a larger

d* for (2.8) (in the data analysis setting)) in Theorem 3.

Since (4.3) is of interest in Section 5, we note that it

may be calculated using the following facts. Since we may

represent Sj as Sj Yj' Yj where Yj- N (0, /n) (1i < j < k),

it follows that

21 12
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JJ

-(t) P[S < t] (2 / ...fe- j j) -yjdy
Yyj S t~

U r( ) 1/2 z(4.4)
P 2

j r /n < t

J Where we utilized an orthogonal transformation), and (from

Pacharns (1955)) that

(nit/2 )p/2 c c (pjt/2)S rq-P/2 u

IP(C / jj 1/ Z " wheeve d S ~ + 1).(51

(4.5)

11
Let 7.i b_ Np(Pi ,  i

) for i 11 l...,k, and assume p >i

' Here 'the k positive-definite p),p variance-covariance matrices

i ... '$kare assumed unknown, and need not be equal. Let

~g('Pl"''-k ) he an experimenter-specified funiction with range

$, ~space {i..,}as in Section 2, and consider the same selection
- probl~un as in Section 2. It follows from Dudewiez (1971) and

e, Dudewicz and Dalal (1975) that no single-stage procedureo for

i-, this problem can satisfy a probability requirement like (2.8),

namly
~P(CS10 > P,- whenever dB(p) > d* ( i

13 "



However, since (5.1) is the type of probability requirement one

would usually desire in practice, it is desirable to seek a

satisfying (5.1 in a broader class than the class of single-

stage procedures.

Dudewicz and Bishop (1979) have given a rtethod, called

The Heteroscedastic Method, wnich allows us to modify procedure

of Section 3 into a procedure e which solves the

present problem. Namely, let procedure I-E be specified by a

- sampling rule and a termninal decision rule as follows.

Sampling Rule forP P . Select z > 0, and integer n, > p,

and a pxp positive-definite matrix (a rs). lake observations

from each and every population 7Tc (c 1,...,k) as follows.
Take n0 initial observa,:ions XcI,..,Xcn where Xci

I (X0 1 i , Xc2i,. ,Xc. ' 1,2,... ,n o ) and compute

n _ 0  n0  *(
L E X x Z (X •- ), (5.2)ca. n XciZ' cij £- ci9 ci cj9-Xcj

Scij = ci i j 1,2,...p

I Define the positive integer Nc by

+ Z1 aij S.] + 1}, (5.3)
ci,j--i~ Oi

where [q] denotes the largest integer less than q, and select
p (pxN ) matrices

I0

I
acr

Acor c (r :12..p

orpl ara N

in such a way that:

I 14
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: I~~) aci=..:at ;
cr acr

2) Acr c r E where n c is the Ncx1 vector (ii,...,l)' and

Er is the pxl vector whose rth element is 1 and all other

elements are zero;

and

3) AA' = z( r s ) C (s'j), where A' = (A' A' '

J denotes the direct product, and (bl ) denotes the inverse

of the matrix (bi), r,i ": 1,2,... 5p.

Next take N - n0 additional observations Xcn+l , % and

compute

I p N

I: For Trc construct the p-dimensional vector (Xcl" " ,Xp),

c=1,2,.. .,k.

Terminal Decision Rule for0>HM. Take the same decision

as rueMVP (t) of Section 2 would when it took a sample size

In per population, had t/n z(rs), and observed

i I 'X k
That is, select

' g(X ,... ,Xk)  
(5.6)

Now from (a slight extension of) Theorem (2.20) of

Dudewicz and Bishop (1979) it follows that I z > 0 such that we have

THEOREM 4. Selection procedure q satisfies probability

requirement (5.1). The constant z > 0 inq HM is to be chosen

so that

i [ (%i- i)'- ( i- ) c (d ) 2 j . (5.7)

While the distribution of (5.5) is independent of

I ..I'. 4 k ) ' it is very complicated (see equations (2.12),

(2.13) of Dudewicz and Bishop (1979)), hence calculation of1
11



z > 0 which satisfies (5.7) is not a simple matter. However,

for large no (a design constant under the experimenter's control)

we may approximate (5.7)'s solution:
THEORM1 5. As n 0  the z> 0 which solves (5.7) approaches

the solution of (5.7) when Xl,..,Xk is replaced by (Y1 1 ..

where Yl,... 'k are independent random variables and Yi is

-- : Np(Pi, zp(rs)). This solution may be calculated from (4.3)

and (4.5).

PROOF. This follows from the proof of Theorem (5.1) of

Dudewicz and Bishop (1979), where we find that the limiting (as

n. distribution of (Xl'. 7k) is the same as the

distribution of (YI, "",Yk ) .

6. ETESIONS

While in this paper we have developed a new approach for

one goal of the area known (see Gupta and Panchapakesan (1979),

p. 7) as "ranking and selection", namely "selection of the

best," problems such as the selection of the best t (of k)

miltivariate populations, as well as selection of a subset

containing the best multivariate population, can also be given

solutions using -the methods of this paper. Details willI appear elsewhere.
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